

 page│1

Technical Manual
 MODBUS PROTOCOL

MODBUS application protocol specification

VER 1.1

 page│2

Table of Contents

 [MODBUS APPLICATION PROTOCOL SPECIFICATION]
1. Introduction ...3

1.1 Scope of this document ..3
2. Abbreviations ..3
3. Context ...4
4. General description ..4

4.1 Protocol description ...4
4.2 Data Encoding ...7
4.3 MODBUS Data model ...7
4.4 MODBUS Addressing model ...9
4.5 Define MODBUS Transaction ...10

5. Function Code Categories ..11
5.1 Public Function Code Definition ..12

6. Function codes descriptions ..12
6.1 01 (0x01) Read Coils ...12
6.2 02 (0x02) Read Discrete Inputs ...14
6.3 03 (0x03) Read Holding Registers ..17
6.4 04 (0x04) Read Input Registers ..19
6.5 05 (0x05) Write Single Coil ..21
6.6 06 (0x06) Write Single Register ...22
6.7 07 (0x07) Read Exception Status (Serial Line only) ...24
6.8 08 (0x08) Diagnostics (Serial Line only) ..25

6.8.1 Sub-function codes supported by the serial line devices ………........................26
6.8.2 Example and state diagram ...29

6.9 11 (0x0B) Get Comm Event Counter (Serial Line only) ..30
6.10 12 (0x0C) Get Comm Event Log (Serial Line only) ..31
6.11 15 (0x0F) Write Multiple Coils ...34
6.12 16 (0x10) Write Multiple registers ...36
6.13 17 (0x11) Report Server ID (Serial Line only) ...38
6.14 20 (0x14) Read File Record ...40
6.15 21 (0x15) Write File Record ...42
6.16 22 (0x16) Mask Write Register ...44
6.17 23 (0x17) Read/Write Multiple registers ...45
6.18 24 (0x18) Read FIFO Queue ..47
6.19 43 (0x2B) Encapsulated Interface Transport ..49
6.20 43 / 13 (0x2B / 0x0D) CANopen General Reference Request and Response PDU….…51
6.21 43 / 14 (0x2B / 0x0E) Read Device Identification ...51

7. MODBUS Exception Responses ...55
8. Annex A (Informative): MODBUS RESERVED FUNCTION CODES, SUBCODES AND MEI

TYPES..58
9. Annex B (Informative): CANOPEN GENERAL REFERENCE COMMAND….............................58

Contents

 page│3

1. Introduction
1.1 Scope of this document

MODBUS is an application layer messaging protocol, positioned at level 7 of the OSI model,
which provides client/server communication between devices connected on different types of
buses or networks.
The industry’s serial de facto standard since 1979, MODBUS continues to enable millions of
automation devices to communicate. Today, support for the simple and elegant structure of
MODBUS continues to grow. The Internet community can access MODBUS at a reserved
system port 502 on the TCP/IP stack.
MODBUS is a request/reply protocol and offers services specified by function codes. MODBUS
function codes are elements of MODBUS request/reply PDUs. The objective of this document
is to describe the function codes used within the framework of MODBUS transactions.

MODBUS is an application layer messaging protocol for client/server communication between
devices connected on different types of buses or networks.
It is currently implemented using:

 TCP/IP over Ethernet. See MODBUS Messaging Implementation Guide V1.0a.
 Asynchronous serial transmission over a variety of media (wire : EIA/TIA-232-E, EIA-

422, EIA/TIA-485-A; fiber, radio, etc.)
 MODBUS PLUS, a high speed token passing network.

Figure 1: MODBUS communication stack

References
1. RFC 791, Internet Protocol, Sep81 DARPA

2. Abbreviations
ADU Application Data Unit
HDLC High level Data Link Control
HMI Human Machine Interface
IETF Internet Engineering Task Force
I/O Input / Output
IP Internet Protocol

MODBUS Application Protocol Specification V1.1b3

[MODBUS APPLICATION PROTOCOL SPECIFICATION]

 page│4

MAC Media Access Control
MB MODBUS Protocol
MBAP MODBUS Application Protocol
PDU Protocol Data Unit
PLC Programmable Logic Controller
TCP Transmission Control Protocol

3. Context
The MODBUS protocol allows an easy communication within all types of network architectures.

Figure 2: Example of MODBUS Network Architecture

Every type of devices (PLC, HMI, Control Panel, Driver, Motion control, I/O Device…) can use
MODBUS protocol to initiate a remote operation.
The same communication can be done as well on serial line as on an Ethernet TCP/IP networks.
Gateways allow a communication between several types of buses or network using the MODBUS
protocol.

4. General description
4.1 Protocol description

The MODBUS protocol defines a simple protocol data unit (PDU) independent of the underlying
communication layers. The mapping of MODBUS protocol on specific buses or network can
introduce some additional fields on the application data unit (ADU).

MODBUS Application Protocol Specification V1.1b3

 page│5

Figure 3: General MODBUS frame

The MODBUS application data unit is built by the client that initiates a MODBUS transaction.
The function indicates to the server what kind of action to perform. The MODBUS application
protocol establishes the format of a request initiated by a client.
The function code field of a MODBUS data unit is coded in one byte. Valid codes are in the
range of 1 ... 255 decimal (the range 128 – 255 is reserved and used for exception responses).
When a message is sent f rom a Client to a Server device the function code field tells the server
what kind of action to perform. Function code "0" is not valid.
Sub-function codes are added to some function codes to define multiple actions.
The data field of messages sent from a client to server devices contains additional information
that the server uses to take the action defined by the function code. This can include items like
discrete and register addresses, the quantity of items to be handled, and the count of actual
data bytes in the field.
The data field may be nonexistent (of zero length) in certain kinds of requests, in this case the
server does not require any additional information. The function code alone specifies the action.
If no error occurs related to the MODBUS function requested in a properly received MODBUS
ADU the data field of a response from a server to a client contains the data requested. If an error
related to the MODBUS function requested occurs, the field contains an exception code that the
server application can use to determine the next action to be taken.
For example a client can read the ON / OFF states of a group of discrete outputs or inputs or it
can read/write the data contents of a group of registers.
When the server responds to the client, it uses the function code field to indicate either a normal
(error-free) response or that some kind of error occurred (called an exception response). For a
normal response, the server simply echoes to the request the original function code.

Figure 4: MODBUS transaction (error free)

For an exception response, the server returns a code that is equivalent to the original
function code from the request PDU with its most significant bit set to logic 1.

MODBUS Application Protocol Specification V1.1b3

 page│6

Figure 5: MODBUS transaction (exception response)

 Note: It is desirable to manage a time out in order not to indefinitely wait for an answer which
will perhaps never arrive.

The size of the MODBUS PDU is limited by the size constraint inherited from the first MODBUS
implementation on Serial Line network (max. RS485 ADU = 256 bytes).
Therefore:
MODBUS PDU for serial line communication = 256 - Server address (1 byte) - CRC (2 bytes)
= 253 bytes.

Consequently:
RS232 / RS485 ADU = 253 bytes + Server address (1 byte) + CRC (2 bytes) = 256 bytes.
TCP MODBUS ADU = 253 bytes + MBAP (7 bytes) = 260 bytes.

The MODBUS protocol defines three PDUs. They are :
 MODBUS Request PDU, mb_req_pdu
 MODBUS Response PDU, mb_rsp_pdu
 MODBUS Exception Response PDU, mb_excep_rsp_pdu

The mb_req_pdu is defined as:

mb_req_pdu = {function_code, request_data}, where
function_code = [1 byte] MODBUS function code,
request_data = [n bytes] This field is function code dependent and usually

contains information such as variable references,
variable counts, data offsets, sub-function codes etc.

The mb_rsp_pdu is defined as:
mb_rsp_pdu = {function_code, response_data}, where

function_code = [1 byte] MODBUS function code
response_data = [n bytes] This field is function code dependent and usually

contains information such as variable references,
variable counts, data offsets, sub-function codes, etc.

The mb_excep_rsp_pdu is defined as:
mb_excep_rsp_pdu = {exception-function_code, request_data}, where

exception-function_code = [1 byte] MODBUS function code + 0x80
exception_code = [1 byte] MODBUS Exception Code Defined in table

"MODBUS Exception Codes" (see section 7).

MODBUS Application Protocol Specification V1.1b3

 page│7

4.2 Data Encoding
 MODBUS uses a ‘big-Endian’ representation for addresses and data items. This means that

when a numerical quantity larger than a single byte is transmitted, the most significant byte
is sent first. So for example

Register size value

16 - bits 0x1234 the first byte sent is 0x12 then 0x34
 Note: For more details, see [1] .

4.3 MODBUS Data model

MODBUS bases its data model on a series of tables that have distinguishing characteristics.
The four primary tables are:

Primary tables Object type
Type of

access
Comments

Discretes Input Single bit Read-Only This type of data can be provided by an I/O system.

Coils Single bit Read-Write This type of data can be alterable by an application program.

Input Registers 16-bit word Read-Only This type of data can be provided by an I/O system

Holding Registers 16-bit word Read-Write This type of data can be alterable by an application program.

The distinctions between inputs and outputs, and between bit -addressable and word-
addressable data items, do not imply any application behavior. It is perfectly acceptable, and
very common, to regard all four tables as overlaying one another, if this is the most natural
interpretation on the target machine in question.
For each of the primary tables, the protocol allows individual selection of 65536 data items, and
the operations of read or write of those items are designed to span multiple consecutive data
items up to a data size limit which is dependent on the transaction function code.
It’s obvious that all the data handled via MODBUS (bits, registers) must be located in device
application memory. But physical address in memory should not be confused with data
reference. The only requirement is to link data reference with physical address.
MODBUS logical reference numbers, which are used in MODBUS funct ions, are unsigned
integer indices starting at zero.

 Implementation examples of MODBUS model
The examples below show two ways of organizing the data in device. There are different
organizations possible, but not all are described in this document. Each de vice can have its
own organization of the data according to its application

Example 1 : Device having 4 separate blocks
The example below shows data organization in a device having digital and analog, inputs and
outputs. Each block is separate because data from different blocks have no correlation. Each
block is thus accessible with different MODBUS functions.

MODBUS Application Protocol Specification V1.1b3

 page│8

Figure 6 MODBUS Data Model with separate block

Example 2: Device having only 1 block
In this example, the device has only 1 data block. The same data can be reached via several
MODBUS functions, either via a 16 bit access or via an access bit.

Figure 7 MODBUS Data Model with only 1 block

MODBUS Application Protocol Specification V1.1b3

 page│9

4.4 MODBUS Addressing model

The MODBUS application protocol defines precisely PDU addressing rules.
In a MODBUS PDU each data is addressed from 0 to 65535.

It also defines clearly a MODBUS data model composed of 4 blocks that comprises several
elements numbered from 1 to n.

In the MODBUS data Model each element within a data block is numbered from 1 to n.
Afterwards the MODBUS data model has to be bound to the device application (IEC-61131
object, or other application model).

The pre-mapping between the MODBUS data model and the device application is
totally vendor device specific.

Figure 8 MODBUS Addressing model

The previous figure shows that a MODBUS data numbered X is addressed in the MODBUS PDU X-1.

MODBUS Application Protocol Specification V1.1b3

 page│10

4.5 Define MODBUS Transaction
The following state diagram describes the generic processing of a MODBUS transaction in
server side.

Figure 9 MODBUS Transaction state diagram

Once the request has been processed by a server, a MODBUS response using the adequate
MODBUS server transaction is built.
Depending on the result of the processing two types of response are built :
 A positive MODBUS response :
 the response function code = the request function code

 A MODBUS Exception response (see section 7):
 the objective is to provide to the client relevant information concerning the error

detected during the processing ;
 the exception function code = the request function code + 0x80 ;
 an exception code is provided to indicate the reason of the error.

MODBUS Application Protocol Specification V1.1b3

 page│11

5. Function Code Categories
There are three categories of MODBUS Functions codes. They are :

Public Function Codes
 Are well defined function codes ,
 guaranteed to be unique,
 validated by the MODBUS.org community,
 publicly documented
 have available conformance test,
 includes both defined public assigned function codes as well as unassigned function codes

reserved for future use.

User-Defined Function Codes

 there are two ranges of user-defined function codes, i.e. 65 to 72 and from 100 to 110 decimal.
 user can select and implement a function code that is not supported by the specification.
 there is no guarantee that the use of the selected function code will be unique
 if the user wants to re-position the functionality as a public function code, he must initiate an

RFC to introduce the change into the public category and to have a new public function code
assigned.

 MODBUS Organization, Inc expressly reserves the right to develop the proposed RFC.

Reserved Function Codes

 Function Codes currently used by some companies for legacy products and that are not
available for public use.

 Informative Note: The reader is asked refer to Annex A (Informative) MODBUS RESERVED
FUNCTION CODES, SUBCODES AND MEI TYPES.

Figure 10 MODBUS Function Code Categories

MODBUS Application Protocol Specification V1.1b3

 page│12

5.1 Public Function Code Definition

6. Function codes descriptions
6.1 01 (0x01) Read Coils

This function code is used to read from 1 to 2000 contiguous status of coils in a remote device.
The Request PDU specifies the starting address, i.e. the address of the first coil specified, and
the number of coils. In the PDU Coils are addressed starting at zero. Therefore coils numbered
1-16 are addressed as 0-15.
The coils in the response message are packed as one coil per bit of the data field. Status is
indicated as 1= ON and 0= OFF. The LSB of the first data byte contains the output addressed in
the query. The other coils follow toward the high order end of this byte, and from low order to high
order in subsequent bytes.
If the returned output quantity is not a multiple of eight, the remaining bits in the final data byte
will be padded with zeros (toward the high order end of the byte). The Byte Count field specifies
the quantity of complete bytes of data.

MODBUS Application Protocol Specification V1.1b3

 page│13

Request
Function code 1 Byte 0x01

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of coils 2 Bytes 1 to 2000 (0x7D0)

Response
Function code 1 Byte 0x01

Byte count 1 Byte N*

Coil Status n Byte n = N or N+1

*N = Quantity of Outputs / 8, if the remainder is different of 0 N = N+1

Error
Function code 1 Byte Function code + 0x80

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read discrete outputs 20–38:

Request Response

Field Name (Hex) Field Name (Hex)

Function 01 Function 01

Starting Address Hi 00 Byte Count 03

Starting Address Lo 13 Outputs status 27-20 CD

Quantity of Outputs Hi 00 Outputs status 35-28 6B

Quantity of Outputs Lo 13 Outputs status 38-36 05

The status of outputs 27–20 is shown as the byte value CD hex, or binary 1100 1101. Output
27 is the MSB of this byte, and output 20 is the LSB.
By convention, bits within a byte are shown with the MSB to the left, and the LSB to the right.
Thus the outputs in the first byte are ‘27 through 20’, from left to right. The next byte has outputs
‘35 through 28’, left to right. As the bits are transmitted serially, they flow from LSB to MSB:
20 . . . 27, 28 . . . 35, and so on.
In the last data byte, the status of outputs 38-36 is shown as the byte value 05 hex, or binary
0000 0101. Output 38 is in the sixth bit position from the left, and output 36 is the LSB of this
byte. The five remaining high order bits are zero filled.

 Note: The five remaining bits (toward the high order end) are zero filled.

MODBUS Application Protocol Specification V1.1b3

 page│14

Figure 11: Read Coils state diagram

6.2 02 (0x02) Read Discrete Inputs
This function code is used to read from 1 to 2000 contiguous status of discrete inputs in a remote
device. The Request PDU specifies the starting address, i.e. the address of the first input
specified, and the number of inputs. In the PDU Discrete Inputs are addressed starting at zero.
Therefore Discrete inputs numbered 1-16 are addressed as 0-15.
The discrete inputs in the response message are packed as one input per bit of the data field.
Status is indicated as 1= ON; 0= OFF. The LSB of the first data byte contains the input
addressed in the query. The other inputs follow toward the high order end of this byte, and from
low order to high order in subsequent bytes.
If the returned input quantity is not a multiple of eight, the remaining bits in the final data byte will
be padded with zeros (toward the high order end of the byte). The Byte Count field specifies the
quantity of complete bytes of data.

MODBUS Application Protocol Specification V1.1b3

 page│15

Request

Function code 1 Byte 0x02

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of coils 2 Bytes 1 to 2000 (0x7D0)

Response
Function code 1 Byte 0x02

Byte count 1 Byte N*

Input Status N* x 1 Byte

*N = Quantity of Inputs / 8 if the remainder is different of 0 N = N+1

Error
Function code 1 Byte 0x82

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read discrete inputs 197–218:

Request Response

Field Name (Hex) Field Name (Hex)

Function 02 Function 02

Starting Address Hi 00 Byte Count 03

Starting Address Lo C4 Inputs Status 204-197 AC

Quantity of Inputs Hi 00 Inputs Status 212-205 DB

Quantity of Inputs Lo 16 Inputs Status 218-213 35

The status of discrete inputs 204–197 is shown as the byte value AC hex, or binary 1010 1100.
Input 204 is the MSB of this byte, and input 197 is the LSB.
The status of discrete inputs 218–213 is shown as the byte value 35 hex, or binary 0011 0101.
Input 218 is in the third bit position from the left, and input 213 is the LSB.

 Note: The two remaining bits (toward the high order end) are zero filled.

MODBUS Application Protocol Specification V1.1b3

 page│16

Figure 12: Read Discrete Inputs state diagram

MODBUS Application Protocol Specification V1.1b3

 page│17

6.3 03 (0x03) Read Holding Registers

This function code is used to read the contents of a contiguous block of holding registers in a
remote device. The Request PDU specifies the starting register address and the number of
registers. In the PDU Registers are addressed starting at zero. Therefore registers numbered 1-
16 are addressed as 0-15.
The register data in the response message are packed as two bytes per register, with the binary
contents right justified within each byte. For each register, the first byte contains the high order
bits and the second contains the low order bits.

Request
Function code 1 Byte 0x03

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Registers 2 Bytes 1 to 125 (0x7D)

Response
Function code 1 Byte 0x03

Byte count 1 Byte 2 x N*

Register value N* x 2 Byte

*N = Quantity of Registers

Error
Error code 1 Byte 0x83

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read registers 108 – 110:

Request Response

Field Name (Hex) Field Name (Hex)

Function 03 Function 03

Starting Address Hi 00 Byte Count 06

Starting Address Lo 6B Register value Hi (108) 02

No. of Registers Hi 00 Register value Lo (108) 2B

No. of Registers Lo 03 Register value Hi (109) 00

 Register value Lo (109) 00

 Register value Hi (110) 00

 Register value Lo (110) 64

The contents of register 108 are shown as the two byte values of 02 2B hex, or 555 decimal.
The contents of registers 109–110 are 00 00 and 00 64 hex, or 0 and 100 decimal, respectively.

MODBUS Application Protocol Specification V1.1b3

 page│18

Figure 13: Read Holding Registers state diagram

MODBUS Application Protocol Specification V1.1b3

 page│19

6.4 04 (0x04) Read Input Registers
This function code is used to read from 1 to 125 contiguous input registers in a remote device.
The Request PDU specifies the starting register address and the number of registers. In the
PDU Registers are addressed starting at zero. Therefore input registers numbered 1-16 are
addressed as 0-15.
The register data in the response message are packed as two bytes per register, with the binary
contents right justified within each byte. For each register, the first byte contains the high order
bits and the second contains the low order bits.

Request
Function code 1 Byte 0x04

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Input Registers 2 Bytes 0x0001 to 0x007D

Response
Function code 1 Byte 0x04

Byte count 1 Byte 2 x N*

Input Registers N* x 2 Bytes

*N = Quantity of Input Registers

Error
Error code 1 Byte 0x84

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read input registers 9:

Request Response

Field Name (Hex) Field Name (Hex)

Function 04 Function 04

Starting Address Hi 00 Byte Count 02

Starting Address Lo 08 Input Reg. 9 Hi 00

Quantity of Input Reg. Hi 00 Input Reg. 9 Lo 0A

Quantity of Input Reg. Lo 01

The contents of input register 9 are shown as the two byte values of 00 0A hex, or 10 decimal.

MODBUS Application Protocol Specification V1.1b3

 page│20

Figure 14: Read Input Registers state diagram

MODBUS Application Protocol Specification V1.1b3

 page│21

6.5 05 (0x05) Write Single Coil
This function code is used to write a single output to either ON or OFF in a remote device.
The requested ON/OFF state is specified by a constant in the request data field. A value of FF
00 hex requests the output to be ON. A value of 00 00 requests it to be OFF. All other values
are illegal and will not affect the output.
The Request PDU specifies the address of the coil to be forced. Coils are addressed starting at
zero. Therefore coil numbered 1 is addressed as 0. The requested ON/OFF state is specified
by a constant in the Coil Value field. A value of 0XFF00 requests the coil to be ON. A value of
0X0000 requests the coil to be off. All other values are illegal and will not affect the coil.

The normal response is an echo of the request, returned after the coil state has been written.

Request
Function code 1 Byte 0x05

Output Address 2 Bytes 0x0000 to 0xFFFF

Output Value 2 Bytes 0x0000 or 0xFF00

Response
Function code 1 Byte 0x05

Output Address 2 Bytes 0x0000 to 0xFFFF

Output Value 2 Bytes 0x0000 or 0xFF00

Error
Error code 1 Byte 0x85

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to write Coil 173 ON:

Request Response

Field Name (Hex) Field Name (Hex)

Function 05 Function 05

Output Address Hi 00 Output Address Hi 00

Output Address Lo AC Output Address Lo AC

Output Value Hi FF Output Value Hi FF

Output Value Lo 00 Output Value Lo 00

MODBUS Application Protocol Specification V1.1b3

 page│22

Figure 15: Write Single Output state diagram

6.6 06 (0x06) Write Single Register
This function code is used to write a single holding register in a remote device.
The Request PDU specifies the address of the register to be written. Registers are addressed
starting at zero. Therefore register numbered 1 is addressed as 0.
The normal response is an echo of the request, returned after the register contents have been
written.

Request
Function code 1 Byte 0x06

Register Address 2 Bytes 0x0000 to 0xFFFF

Register Value 2 Bytes 0x0000 to 0xFFFF

Response
Function code 1 Byte 0x06

Register Address 2 Bytes 0x0000 to 0xFFFF

Register Value 2 Bytes 0x0000 to 0xFFFF

MODBUS Application Protocol Specification V1.1b3

 page│23

Error
Error code 1 Byte 0x86

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to write register 2 to 00 03 hex:
Request Response
Field Name (Hex) Field Name (Hex)

Function 06 Function 06

Register Address Hi 00 Register Address Hi 00

Register Address Lo 01 Register Address Lo 01

Register Value Hi 00 Register Value Hi 00

Register Value Lo 03 Register Value Lo 03

Figure 16: Write Single Register state diagram

MODBUS Application Protocol Specification V1.1b3

 page│24

6.7 07 (0x07) Read Exception Status (Serial Line only)
This function code is used to read the contents of eight Exception Status outputs in a remote
device.
The function provides a simple method for accessing this information, because the Exception
Output references are known (no output reference is needed in the function).
The normal response contains the status of the eight Exception Status outputs. The outputs are
packed into one data byte, with one bit per output. The status of the lowest output reference is
contained in the least significant bit of the byte.
The contents of the eight Exception Status outputs are device specific.

Request
Function code 1 Byte 0x07

Response
Function code 1 Byte 0x07

Output Data 1 Byte 0x00 to 0xFF

Error
Error code 1 Byte 0x87

Exception code 1 Byte 01 or 04

Here is an example of a request to read the exception status:
Request Response
Field Name (Hex) Field Name (Hex)

Function 07 Function 07

 Output Data 6D

In this example, the output data is 6D hex (0110 1101 binary). Left to right, the outputs are OFF–
ON–ON–OFF–ON–ON–OFF–ON. The status is shown from the highest to the lowest addressed
output.

MODBUS Application Protocol Specification V1.1b3

 page│25

Figure 17: Read Exception Status state diagram

6.8 08 (0x08) Diagnostics (Serial Line only)
MODBUS function code 08 provides a series of tests for checking the communication system
between a client device and a server, or for checking various internal error conditions within a
server.
The function uses a two–byte sub-function code field in the query to define the type of test to be
performed. The server echoes both the function code and sub-function code in a normal
response. Some of the diagnostics cause data to be returned from the remote device in the data
field of a normal response.
In general, issuing a diagnostic function to a remote device does not affect the running of the
user program in the remote device. User logic, like discrete and registers, is not accessed by
the diagnostics. Certain functions can optionally reset error counters in the remote device.
A server device can, however, be forced into ‘Listen Only Mode’ in which it will monitor the
messages on the communications system but not respond to them. This can affect the outcome
of your application program if it depends upon any further exchange of data with the remote
device. Generally, the mode is forced to remove a malfunctioning remote device from the
communications system.
The following diagnostic functions are dedicated to serial line devices.
The normal response to the Return Query Data request is to loopback the same data. The
function code and sub-function codes are also echoed.

MODBUS Application Protocol Specification V1.1b3

 page│26

Request
Function code 1 Byte 0x08

Sub-function 2 Bytes

Data N x 2 Bytes

Response
Function code 1 Byte 0x08

Sub-function 2 Bytes

Data N x 2 Bytes

Error
Error code 1 Byte 0x88

Exception code 1 Byte 01 or 02 or 03 or 04

6.8.1 Sub-function codes supported by the serial line devices
Here the list of sub-function codes supported by the serial line devices. Each sub-function code
is then listed with an example of the data field contents that would apply for that diagnostic.

Sub-function code
Name

Hex Dec

00 00 Return Query Data

01 01 Restart Communications Option

02 02 Return Diagnostic Register

03 03 Change ASCII Input Delimiter

04 04 Force Listen Only Mode

 05.. 09 RESERVED

0A 10 Clear Counters and Diagnostic Register

0B 11 Return Bus Message Count

0C 12 Return Bus Communication Error Count

0D 13 Return Bus Exception Error Count

0E 14 Return Server Message Count

0F 15 Return Server No Response Count

10 16 Return Server NAK Count

11 17 Return Server Busy Count

12 18 Return Bus Character Overrun Count

13 19 RESERVED

14 20 Clear Overrun Counter and Flag

N.A. 21 ... 65535 RESERVED

MODBUS Application Protocol Specification V1.1b3

 page│27

00 Return Query Data
The data passed in the request data field is to be returned (looped back) in the response. The
entire response message should be identical to the request.

Sub-function Data Field (Request) Data Field (Response)
00 00 Any Echo Request Data

01 Restart Communications Option
The remote device serial line port must be initialized and restarted, and all of its communications
event counters are cleared. If the port is currently in Listen Only Mode, no response is returned.
This function is the only one that brings the port out of Listen Only Mode. If the port is not
currently in Listen Only Mode, a normal response is returned. This occurs before the restart is
executed.
When the remote device receives the request, it attempts a restart and executes its power–up
confidence tests. Successful completion of the tests will bring the port online.
A request data field contents of FF 00 hex causes the port’s Communications Event Log to be
cleared also. Contents of 00 00 leave the log as it was prior to the restart.

Sub-function Data Field (Request) Data Field (Response)
00 01 00 00 Echo Request Data
00 01 FF 00 Echo Request Data

02 Return Diagnostic Register
The contents of the remote device’s 16–bit diagnostic register are returned in the response.

Sub-function Data Field (Request) Data Field (Response)
00 02 00 00 Diagnostic Register Contents

03 Change ASCII Input Delimiter
The character ‘CHAR’ passed in the request data field becomes the end of message delimiter
for future messages (replacing the default LF character). This function is useful in cases of a
Line Feed is not required at the end of ASCII messages.

Sub-function Data Field (Request) Data Field (Response)
00 03 CHAR 00 Echo Request Data

04 Force Listen Only Mode
Forces the addressed remote device to its Listen Only Mode for MODBUS communications.
This isolates it from the other devices on the network, allowing them to continue communicating
without interruption from the addressed remote device. No response is returned.
When the remote device enters its Listen Only Mode, all active communication controls are
turned off. The Ready watchdog timer is allowed to expire, locking the controls off. While the
device is in this mode, any MODBUS messages addressed to it or broadcast are monitored, but
no actions will be taken and no responses will be sent.
The only function that will be processed after the mode is entered will be the Restart
Communications Option function (function code 8, sub-function 1).

Sub-function Data Field (Request) Data Field (Response)
00 04 00 00 No Response Returned

10 (0A Hex) Clear Counters and Diagnostic Register
The goal is to clear all counters and the diagnostic register. Counters are also cleared upon
power–up.

Sub-function Data Field (Request) Data Field (Response)
00 0A 00 00 Echo Request Data

MODBUS Application Protocol Specification V1.1b3

 page│28

11 (0B Hex) Return Bus Message Count
The response data field returns the quantity of messages that the remote device has detected
on the communications system since its last restart, clear counters operation, or power–up.

Sub-function Data Field (Request) Data Field (Response)
00 0B 00 00 Total Message Count

12 (0C Hex) Return Bus Communication Error Count
The response data field returns the quantity of CRC errors encountered by the remote device
since its last restart, clear counters operation, or power–up.

Sub-function Data Field (Request) Data Field (Response)
00 0C 00 00 CRC Error Count

13 (0D Hex) Return Bus Exception Error Count
The response data field returns the quantity of MODBUS exception responses returned by the
remote device since its last restart, clear counters operation, or power–up.
Exception responses are described and listed in section 7 .

Sub-function Data Field (Request) Data Field (Response)
00 0D 00 00 Exception Error Count

14 (0E Hex) Return Server Message Count
The response data field returns the quantity of messages addressed to the remote device, or
broadcast, that the remote device has processed since its last restart, clear counters operation,
or power–up.

Sub-function Data Field (Request) Data Field (Response)
00 0E 00 00 Server Message Count

15 (0F Hex) Return Server No Response Count
The response data field returns the quantity of messages addressed to the remote device for
which it has returned no response (neither a normal response nor an exception response), since
its last restart, clear counters operation, or power–up.

Sub-function Data Field (Request) Data Field (Response)
00 0F 00 00 Server No Response Count

16 (10 Hex) Return Server NAK Count
The response data field returns the quantity of messages addressed to the remote device for
which it returned a Negative Acknowledge (NAK) exception response, since its last restart, clear
counters operation, or power–up. Exception responses are described and listed in section 7 .

Sub-function Data Field (Request) Data Field (Response)
00 10 00 00 Server NAK Count

17 (11 Hex) Return Server Busy Count
The response data field returns the quantity of messages addressed to the remote device for
which it returned a Server Device Busy exception response, since its last restart, clear counters
operation, or power–up.

Sub-function Data Field (Request) Data Field (Response)
00 11 00 00 Server Device Busy Count

18 (12 Hex) Return Bus Character Overrun Count
The response data field returns the quantity of messages addressed to the remote device that
it could not handle due to a character overrun condition, since its last restart, clear counters
operation, or power–up. A character overrun is caused by data characters arriving at the port

MODBUS Application Protocol Specification V1.1b3

 page│29

faster than they can be stored, or by the loss of a character due to a hardware malfunction.
Sub-function Data Field (Request) Data Field (Response)
00 12 00 00 Server Character Overrun Count

20 (14 Hex) Clear Overrun Counter and Flag
Clears the overrun error counter and reset the error flag.

Sub-function Data Field (Request) Data Field (Response)
00 14 00 00 Echo Request Data

6.8.2 Example and state diagram
Here is an example of a request to remote device to Return Query Data. This uses a sub-function
code of zero (00 00 hex in the two–byte field). The data to be returned is sent in the two–byte
data field (A5 37 hex).

Request Response
Field Name (Hex) Field Name (Hex)
Function 08 Function 08
Sub-function Hi 00 Sub-function Hi 00
Sub-function Lo 00 Sub-function Lo 00
Data Hi A5 Data Hi A5
Data Lo 37 Data Lo 37

The data fields in responses to other kinds of queries could contain error counts or other data
requested by the sub-function code.

MODBUS Application Protocol Specification V1.1b3

Figure 18: Diagnostic state diagram

 page│30

6.9 11 (0x0B) Get Comm Event Counter (Serial Line only)
This function code is used to get a status word and an event count from the remote device's
communication event counter.
By fetching the current count before and after a series of messages, a client can determine
whether the messages were handled normally by the remote device.
The device’s event counter is incremented once for each successful message completion. It is
not incremented for exception responses, poll commands, or fetch event counter commands.
The event counter can be reset by means of the Diagnostics function (code 08), with a sub-
function of Restart Communications Option (code 00 01) or Clear Counters and Diagnostic
Register (code 00 0A).
The normal response contains a two–byte status word, and a two–byte event count. The status

word will be all ones (FF FF hex) if a previously–issued program command is still being
processed by the remote device (a busy condition exists). Otherwise, the status word will be all
zeros.

Request
Function code 1 Byte 0x0B

Response
Function code 1 Byte 0x0B

Status 2 Bytes 0x0000 to 0xFFFF

Event Count 2 Bytes 0x0000 to 0xFFFF

Error
Error code 1 Byte 0x8B

Exception code 1 Byte 01 or 04

Here is an example of a request to get the communications event counter in remote device:
Request Response
Field Name (Hex) Field Name (Hex)
Function 0B Function 0B
 Status Hi FF
 Status Lo FF
 Event Count Hi 01
 Event Count Lo 08

In this example, the status word is FF FF hex, indicating that a program function is still in
progress in the remote device. The event count shows that 264 (01 08 hex) events have been
counted by the device.

MODBUS Application Protocol Specification V1.1b3

 page│31

Figure 19: Get Comm Event Counter state diagram

6.10 12 (0x0C) Get Comm Event Log (Serial Line only)
This function code is used to get a status word, event count, message count, and a field of event
bytes from the remote device.
The status word and event counts are identical to that returned by the Get Communications
Event Counter function (11, 0B hex).
The message counter contains the quantity of messages processed by the remote device since
its last restart, clear counters operation, or power –up. This count is identical to that returned by
the Diagnostic function (code 08), sub-function Return Bus Message Count (code 11, 0B hex).
The event bytes field contains 0-64 bytes, with each byte corresponding to the status of one

MODBUS send or receive operation for the remote device. The remote device enters the events
into the field in chronological order. Byte 0 is the most recent event. Each new byte flushes the
oldest byte from the field.

The normal response contains a two–byte status word field, a two–byte event count field, a

MODBUS Application Protocol Specification V1.1b3

 page│32

two–byte message count field, and a field containing 0-64 bytes of events. A byte count field
defines the total length of the data in these four fields.

Request
Function code 1 Byte 0x0C

Response
Function code 1 Byte 0x0C

Byte Count 1 Byte N*

Status 2 Bytes 0x0000 to 0xFFFF

Event Count 2 Bytes 0x0000 to 0xFFFF

Message Count 2 Bytes 0x0000 to 0xFFFF

Events (N-6) x 1 Byte

*N = Quantity of Events + 3 x 2 Bytes, (Length of Status, Event Count and Message Count)

Error
Error code 1 Byte 0x8C

Exception code 1 Byte 01 or 04

Here is an example of a request to get the communications event log in remote device:

Request Response
Field Name (Hex) Field Name (Hex)
Function 0C Function 0C
 Byte Count 08
 Status Hi 00
 Status Lo 00
 Event Count Hi 01
 Event Count Lo 08
 Message Count Hi 01
 Message Count Lo 21
 Event 0 20
 Event 1 00

In this example, the status word is 00 00 hex, indicating that the remote device is not processing
a program function. The event count shows that 264 (01 08 hex) events have been counted by
the remote device. The message count shows that 289 (01 21 hex) messages have been
processed.
The most recent communications event is shown in the Event 0 byte. Its content (20 hex) show
that the remote device has most recently entered the Listen Only Mode.
The previous event is shown in the Event 1 byte. Its contents (00 hex) show that the remote
device received a Communications Restart.
The layout of the response’s event bytes is described below.

What the Event Bytes Contain
An event byte returned by the Get Communications Event Log function can be any one of four

MODBUS Application Protocol Specification V1.1b3

 page│33

types. The type is defined by bit 7 (the high–order bit) in each byte. It may be further defined by
bit 6. This is explained below.

 Remote device MODBUS Receive Event

The remote device stores this type of event byte when a query message is received. It
is stored before the remote device processes the message. This event is defined by bit
7 set to logic ‘1’. The other bits will be set to a logic ‘1’ if the corresponding condition is
TRUE. The bit layout is:

Bit Contents
0 Not Used
1 Communication Error
2 Not Used
3 Not Used
4 Character Overrun
5 Currently in Listen Only Mode
6 Broadcast Received
7 1

 Remote device MODBUS Send Event

The remote device stores this type of event byte when it finishes processing a request
message. It is stored if the remote device returned a normal or exception response, or
no response. This event is defined by bit 7 set to a logic ‘0’, with bit 6 set to a ‘1’. The
other bits will be set to a logic ‘1’ if the corresponding condition is TRUE. The bit layout
is:

Bit Contents
0 Read Exception Sent (Exception Codes 1-3)
1 Server Abort Exception Sent (Exception Code 4)
2 Server Busy Exception Sent (Exception Codes 5-6)
3 Server Program NAK Exception Sent (Exception Code 7)
4 Write Timeout Error Occurred
5 Currently in Listen Only Mode
6 1
7 0

 Remote device Entered Listen Only Mode

The remote device stores this type of event byte when it enters the Listen Only Mode.
The event is defined by a content of 04 hex.

 Remote device Initiated Communication Restart

The remote device stores this type of event byte when its communications port is
restarted. The remote device can be restarted by the Diagnostics function (code 08), with
sub-function Restart Communications Option (code 00 01).
That function also places the remote device into a ‘Continue on Error’ or ‘Stop on Error’
mode. If the remote device is placed into ‘Continue on Error’ mode, the event byte is
added to the existing event log. If the remote device is placed into ‘Stop on Error’ mode,

MODBUS Application Protocol Specification V1.1b3

 page│34

the byte is added to the log and the rest of the log is cleared to zeros.
The event is defined by a content of zero.

Figure 20: Get Comm Event Log state diagram

6.11 15 (0x0F) Write Multiple Coils
This function code is used to force each coil in a sequence of coils to either ON or OFF in a
remote device. The Request PDU specifies the coil references to be forced. Coils are addressed
starting at zero. Therefore coil numbered 1 is addressed as 0.
The requested ON/OFF states are specified by contents of the request data field. A logical '1' in
a bit position of the field requests the corresponding output to be ON. A logical '0' requests it to
be OFF.
The normal response returns the function code, starting address, and quantity of coils forced.

MODBUS Application Protocol Specification V1.1b3

 page│35

Request PDU

Function code 1 Byte 0x0F

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Outputs 2 Bytes 0x0001 to 0x07B0

Byte Count 1 Byte N*

Function code 1 Byte 0x0F

Outputs Value N* x 1 Byte

*N = Quantity of Outputs / 8, if the remainder is different of 0 → N = N+1

Response PDU
Function code 1 Byte 0x0F

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Outputs 2 Bytes 0x0001 to 0x07B0

Error
Error code 1 Byte 0x8F

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to write a series of 10 coils starting at coil 20:
The request data contents are two bytes: CD 01 hex (1100 1101 0000 0001 binary). The binary
bits correspond to the outputs in the following way:

Bit: 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1
Output: 27 26 25 24 23 22 21 20 – – – – – – 29 28

The first byte transmitted (CD hex) addresses outputs 27-20, with the least significant bit
addressing the lowest output (20) in this set.
The next byte transmitted (01 hex) addresses outputs 29-28, with the least significant bit
addressing the lowest output (28) in this set. Unused bits in the last data byte should be zero–
filled.

Request Response
Field Name (Hex) Field Name (Hex)
Function 0F Function 0F
Starting Address Hi 00 Starting Address Hi 00
Starting Address Lo 13 Starting Address Lo 13
Quantity of Outputs Hi 00 Quantity of Outputs Hi 00
Quantity of Outputs Lo 0A Quantity of Outputs Lo 0A
Byte Count 02
Outputs Value Hi CD
Outputs Value Lo 01

MODBUS Application Protocol Specification V1.1b3

 page│36

Figure 21: Write Multiple Outputs state diagram

6.12 16 (0x10) Write Multiple registers
This function code is used to write a block of contiguous registers (1 to 123 registers) in a remote
device.
The requested written values are specified in the request data field. Data is packed as two bytes
per register.
The normal response returns the function code, starting address, and quantity of registers written.

Request
Function code 1 Byte 0x10

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Registers 2 Bytes 0x0001 to 0x007B

Byte Count 1 Byte 2 x N*

Registers Value N* x 2 Bytes value

*N = Quantity of Registers

MODBUS Application Protocol Specification V1.1b3

 page│37

Response

Function code 1 Byte 0x10

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Registers 2 Bytes 1 to 123 (0x7B)

Error
Error code 1 Byte 0x90

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to write two registers starting at 2 to 00 0A and 01 02 hex:
Request Response
Field Name (Hex) Field Name (Hex)
Function 10 Function 10
Starting Address Hi 00 Starting Address Hi 00
Starting Address Lo 01 Starting Address Lo 01
Quantity of Registers Hi 00 Quantity of Registers Hi 00
Quantity of Registers Lo 02 Quantity of Registers Lo 02
Byte Count 04
Registers Value Hi 00
Registers Value Lo 0A
Registers Value Hi 01
Registers Value Lo 02

MODBUS Application Protocol Specification V1.1b3

 page│38

Figure 22: Write Multiple Registers state diagram

6.13 17 (0x11) Report Server ID (Serial Line only)
This function code is used to read the description of the type, the current status, and other
information specific to a remote device.
The format of a normal response is shown in the following example. The data contents are
specific to each type of device.

Request
Function code 1 Byte 0x11

Response
Function code 1 Byte 0x11

Byte Count 1 Byte

Server ID device specific

Run Indicator Status 1 Byte 0x00 = OFF, 0xFF = ON

Additional Data

MODBUS Application Protocol Specification V1.1b3

 page│39

Error
Error code 1 Byte 0x91

Exception code 1 Byte 01 or 04

Here is an example of a request to report the ID and status:
Request Response
Field Name (Hex) Field Name (Hex)
Function 11 Function 11
 Byte Count Device Specific
 Server ID Device Specific
 Run Indicator Status 0x00 or 0xFF
 Additional Data Device Specific

Figure 23: Report server ID state diagram

MODBUS Application Protocol Specification V1.1b3

 page│40

6.14 20 (0x14) Read File Record
This function code is used to perform a file record read. All Request Data Lengths are provided
in terms of number of bytes and all Record Lengths are provided in terms of registers.
A file is an organization of records. Each file contains 10000 records, addressed 0000 to 9999
decimal or 0X0000 to 0X270F. For example, record 12 is addressed as 12.
The function can read multiple groups of references. The groups can be separating (non -
contiguous), but the references within each group must be sequential.
Each group is defined in a separate ‘sub -request’ field that contains 7 bytes:

The reference type: 1 byte (must be specified as 6)
The File number: 2 bytes
The starting record number within the file: 2 bytes
The length of the record to be read: 2 bytes.

The quantity of registers to be read, combined with all other fields in the expected response,
must not exceed the allowable length of the MODBUS PDU : 253 bytes.
The normal response is a series of ‘sub-responses’, one for each ‘sub-request’. The byte count
field is the total combined count of bytes in all ‘sub -responses’. In addition, each ‘sub-response’
contains a field that shows its own byte count.

Request
Function code 1 Byte 0x14

Byte Count 1 Byte 0x07 to 0xF5 bytes

Sub-Req. x, Reference Type 1 Byte 06

Sub-Req. x, File Number 2 Bytes 0x0001 to 0xFFFF

Sub-Req. x, Record Number 2 Bytes 0x0000 to 0x270F

Sub-Req. x, Record Length 2 Bytes N

Sub-Req. x+1, ...

Response
Function code 1 Byte 0x14

Resp. data Length 1 Byte 0x07 to 0xF5

Sub-Req. x, File Resp. length 1 Byte 0x07 to 0xF5

Sub-Req. x, Reference Type 1 Byte 6

Sub-Req. x, Record Data N x 2 Bytes

Sub-Req. x+1, ...

Error
Error code 1 Byte 0x94

Exception code 1 Byte 01 or 02 or 03 or 04 or 08

While it is allowed for the File Number to be in the range 1 to 0xFFFF, it should be noted that
interoperability with legacy equipment may be compromised if the File Number is greater than
10 (0x0A).

Here is an example of a request to read two groups of references from remote device:

MODBUS Application Protocol Specification V1.1b3

 page│41

 Group 1 consists of two registers from file 4, starting at register 1 (address 0001).
 Group 2 consists of two registers from file 3, starting at register 9 (address 0009).

Request Response
Field Name (Hex) Field Name (Hex)
Function 14 Function 14
Byte Count 0E Resp. Data length 0C
Sub-Req. 1, Ref. Type 06 Sub-Req. 1, File resp. length 05
Sub-Req. 1, File Number Hi 00 Sub-Req. 1, Ref. Type 06
Sub-Req. 1, File Number Lo 04 Sub-Req. 1, Register.Data Hi 0D
Sub-Req. 1, Record number Hi 00 Sub-Req. 1, Register.DataLo FE
Sub-Req. 1, Record number Lo 01 Sub-Req. 1, Register.Data Hi 00
Sub-Req. 1, Record Length Hi 00 Sub-Req. 1, Register.DataLo 20
Sub-Req. 1, Record Length Lo 02 Sub-Req. 2, File resp. length 05
Sub-Req. 2, Ref. Type 06 Sub-Req. 2, Ref. Type 06
Sub-Req. 2, File Number Hi 00 Sub-Req. 2, Register.Data H 33
Sub-Req. 2, File Number Lo 03 Sub-Req. 2, Register.DataLo CD
Sub-Req. 2, Record number Hi 00 Sub-Req. 2, Register.Data Hi 00
Sub-Req. 2, Record number Lo 09 Sub-Req. 2, Register.DataLo 40
Sub-Req. 2, Record Length Hi 00
Sub-Req. 2, Record Length Lo 02

Figure 24: Read File Record state diagram

MODBUS Application Protocol Specification V1.1b3

 page│42

6.15 21 (0x15) Write File Record
This function code is used to perform a file record write. All Request Data Lengths are provided
in terms of number of bytes and all Record Lengths are provided in terms of the number of 16-
bit words.
A file is an organization of records. Each file contains 10000 records, addressed 0000 to 9999
decimal or 0X0000 to 0X270F. For example, record 12 is addressed as 12.
The function can write multiple groups of references. The groups can be separate, i.e. n on–
contiguous, but the references within each group must be sequential.
Each group is defined in a separate ‘sub -request’ field that contains 7 bytes plus the data:

The reference type: 1 byte (must be specified as 6)
The file number: 2 bytes
The starting record number within the file: 2 bytes
The length of the record to be written: 2 bytes
The data to be written: 2 bytes per register.

The quantity of registers to be written, combined with all other fields in the request, must not
exceed the allowable length of the MODBUS PDU : 253bytes.
The normal response is an echo of the request.

Request
Function code 1 Byte 0x15

Request data length 1 Byte 0x09 to 0xFB

Sub-Req. x, Reference Type 1 Byte 06

Sub-Req. x, File Number 2 Bytes 0x0001 to 0xFFFF

Sub-Req. x, Record Number 2 Bytes 0x0000 to 0x270F

Sub-Req. x, Record length 2 Bytes N

Sub-Req. x, Record data N x 2 Bytes

Sub-Req. x+1, ...

Response
Function code 1 Byte 0x15

Response Data length 1 Byte 0x09 to 0xFB

Sub-Req. x, Reference Type 1 Byte 06

Sub-Req. x, File Number 2 Bytes 0x0001 to 0xFFFF

Sub-Req. x, Record number 2 Bytes 0x0000 to 0x270F

Sub-Req. x, Record length 2 Bytes N

Sub-Req. x, Record Data N x 2 Bytes

Sub-Req. x+1, ...

Error
Error code 1 Byte 0x95

Exception code 1 Byte 01 or 02 or 03 or 04 or 08

While it is allowed for the File Number to be in the range 1 to 0xFFFF, it should be noted that

MODBUS Application Protocol Specification V1.1b3

 page│43

interoperability with legacy equipment may be compromised if the File Number is greater than
10 (0x0A).

Here is an example of a request to write one group of references into remote device:
 The group consists of three registers in file 4, starting at register 7 (address 0007).

Request Response
Field Name (Hex) Field Name (Hex)
Function 15 Function 15
Request Data length 0D Request Data length 0D
Sub-Req. 1, Ref. Type 06 Sub-Req. 1, Ref. Type 06
Sub-Req. 1, File Number Hi 00 Sub-Req. 1, File Number Hi 00
Sub-Req. 1, File Number Lo 04 Sub-Req. 1, File Number Lo 04
Sub-Req. 1, Record number Hi 00 Sub-Req. 1, Record number Hi 00
Sub-Req. 1, Record number Lo 07 Sub-Req. 1, Record number Lo 07
Sub-Req. 1, Record length Hi 00 Sub-Req. 1, Record length Hi 00
Sub-Req. 1, Record length Lo 03 Sub-Req. 1, Record length Lo 03
Sub-Req. 1, Register Data Hi 06 Sub-Req. 1, Register Data Hi 06
Sub-Req. 1, Register Data Lo AF Sub-Req. 1, Register Data Lo AF
Sub-Req. 1, Register Data Hi 04 Sub-Req. 1, Register Data Hi 04
Sub-Req. 1, Register Data Lo BE Sub-Req. 1, Register Data Lo BE
Sub-Req. 1, Register Data Hi 10 Sub-Req. 1, Register Data Hi 10
Sub-Req. 1, Register Data Lo 0D Sub-Req. 1, Register Data Lo 0D

Figure 25: Write File Record state diagram

MODBUS Application Protocol Specification V1.1b3

 page│44

6.16 22 (0x16) Mask Write Register
This function code is used to modify the contents of a specified holding register using a
combination of an AND mask, an OR mask, and the register's current contents. The function
can be used to set or clear individual bits in the register.
The request specifies the holding register to be written, the data to be used as the AND mask,
and the data to be used as the OR mask. Registers are addressed starting at zero. Therefore
registers 1-16 are addressed as 0-15.
The function’s algorithm is:
Result = (Current Contents AND And_Mask) OR (Or_Mask AND (NOT And_Mask))
For example:

Hex Binary
Current Contents= 12 0001 0010
And_Mask = F2 1111 0010
Or_Mask = 25 0010 0101

(NOT And_Mask)= 0D 0000 1101

Result = 17 0001 0111

 Note:
 If the Or_Mask value is zero, the result is simply the logical ANDing of the current

contents and And_Mask. If the And_Mask value is zero, the result is equal to the
Or_Mask value.

 The contents of the register can be read with the Read Holding Registers function
(function code 03). They could, however, be changed subsequently as the controller
scans its user logic program.

The normal response is an echo of the request. The response is returned after the register has
been written.

Request
Function code 1 Byte 0x16

Reference Address 2 Bytes 0x0000 to 0xFFFF

And_Mask 2 Bytes 0x0000 to 0xFFFF

Or_Mask 2 Bytes 0x0000 to 0xFFFF

Response
Function code 1 Byte 0x16

Reference Address 2 Bytes 0x0000 to 0xFFFF

And_Mask 2 Bytes 0x0000 to 0xFFFF

Or_Mask 2 Bytes 0x0000 to 0xFFFF

Error
Error code 1 Byte 0x96

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a Mask Write to register 5 in remote device, using the above mask values.

MODBUS Application Protocol Specification V1.1b3

 page│45

Request Response
Field Name (Hex) Field Name (Hex)
Function 16 Function 16
Reference address Hi 00 Reference address Hi 00
Reference address Lo 04 Reference address Lo 04
And_Mask Hi 00 And_Mask Hi 00
And_Mask Lo F2 And_Mask Lo F2
Or_Mask Hi 00 Or_Mask Hi 00
Or_Mask Lo 25 Or_Mask Lo 25

Figure 26: Mask Write Holding Register state diagram

6.17 23 (0x17) Read/Write Multiple registers
This function code performs a combination of one read operation and one write operation in a
single MODBUS transaction. The write operation is performed before the read.
Holding registers are addressed starting at zero. Therefore holding registers 1-16 are addressed

MODBUS Application Protocol Specification V1.1b3

 page│46

in the PDU as 0-15.
The request specifies the starting address and number of holding registers to be read as well as
the starting address, number of holding registers, and the data to be written. The byte count
specifies the number of bytes to follow in the write data field.
The normal response contains the data from the group of registers that were read. The byte count
field specifies the quantity of bytes to follow in the read data field.

Request
Function code 1 Byte 0x17
Read Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity to Read 2 Bytes 0x0001 to 0x007D
Write Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity to Write 2 Bytes 0x0001 to 0X0079

Write Byte Count 1 Byte 2 x N*

Write Registers Value N*x 2 Bytes

*N = Quantity to Write

Response
Function code 1 Byte 0x17

Byte Count 1 Byte 2 x N'*

Read Registers value N'* x 2 Bytes

*N' = Quantity to Read

Error
Error code 1 Byte 0x97

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read six registers starting at register 4, and to write three
registers starting at register 15:
Request Response
Field Name (Hex) Field Name (Hex)
Function 17 Function 17
Read Starting Address Hi 00 Byte Count 0C
Read Starting Address Lo 03 Read Registers value Hi 00
Quantity to Read Hi 00 Read Registers value Lo FE
Quantity to Read Lo 06 Read Registers value Hi 0A
Write Starting Address Hi 00 Read Registers value Lo CD
Write Starting address Lo 0E Read Registers value Hi 00
Quantity to Write Hi 00 Read Registers value Lo 01
Quantity to Write Lo 03 Read Registers value Hi 00
Write Byte Count 06 Read Registers value Lo 03
Write Registers Value Hi 00 Read Registers value Hi 00
Write Registers Value Lo FF Read Registers value Lo 0D
Write Registers Value Hi 00 Read Registers value Hi 00
Write Registers Value Lo FF Read Registers value Lo FF
Write Registers Value Hi 00
Write Registers Value Lo FF

MODBUS Application Protocol Specification V1.1b3

 page│47

Figure 27: Read/Write Multiple Registers state diagram

6.18 24 (0x18) Read FIFO Queue
This function code allows to read the contents of a First-In-First-Out (FIFO) queue of register in
a remote device. The function returns a count of the registers in the queue, followed by the
queued data. Up to 32 registers can be read: the count, plus up to 31 queued data registers.
The queue count register is returned first, followed by the queued data registers.
The function reads the queue contents, but does not clear them.
In a normal response, the byte count shows the quantity of bytes to follow, including the queue

MODBUS Application Protocol Specification V1.1b3

 page│48

count bytes and value register bytes (but not including the error check field).
The queue count is the quantity of data registers in the queue (not including the count register).
If the queue count exceeds 31, an exception response is returned with an error code of 03
(Illegal Data Value).

Request
Function code 1 Byte 0x18

FIFO Pointer Address 2 Bytes 0x0000 to 0xFFFF

Response
Function code 1 Byte 0x18

Byte Count 2 Bytes

FIFO Count 2 Bytes ≤31

FIFO Value Register N* x 2 Bytes

*N = FIFO Count

Error
Error code 1 Byte 0x98

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of Read FIFO Queue request to remote device. The request is to read the
queue starting at the pointer register 1246 (0x04DE):
Request Response
Field Name (Hex) Field Name (Hex)
Function 18 Function 18
FIFO Pointer Address Hi 04 Byte Count Hi 00
FIFO Pointer Address Lo DE Byte Count Lo 06
 FIFO Count Hi 00
 FIFO Count Lo 02
 FIFO Value Register Hi 01
 FIFO Value Register Lo B8
 FIFO Value Register Hi 12
 FIFO Value Register Lo 84

In this example, the FIFO pointer register (1246 in the request) is returned with a queue count
of 2. The two data registers follow the queue count. These are:
1247 (contents 440 decimal -- 0x01B8); and 1248 (contents 4740 -- 0x1284).

MODBUS Application Protocol Specification V1.1b3

 page│49

Figure 28: Read FIFO Queue state diagram

6.19 43 (0x2B) Encapsulated Interface Transport
Informative Note: The user is asked to refer to Annex A (Informative) MODBUS RESERVED
FUNCTION CODES, SUBCODES AND MEI TYPES.
Function Code 43 and its MEI Type 14 for Device Identification is one of two Encapsulated
Interface Transport currently available in this Specification. The following function codes and
MEI Types shall not be part of this published Specification and these function codes and MEI
Types are specifically reserved: 43/0-12 and 43/15-255.
The MODBUS Encapsulated Interface (MEI)Transport is a mechanism for tunneling service
requests and method invocations, as well as their returns, inside MODBUS PDUs .

MODBUS Application Protocol Specification V1.1b3

 page│50

The primary feature of the MEI Transport is the encapsulation of method invocations or service
requests that are part of a defined interface as well as method invocation returns or service
responses.

Figure 29: MODBUS encapsulated Interface Transport

The Network Interface can be any communication stack used to send MODBUS PDUs, such
as TCP/IP, or serial line.
A MEI Type is a MODBUS Assigned Number and therefore will be unique, the value between 0
to 255 are Reserved according to Annex A (Informative) except for MEI Type 13 and MEI Type
14.
The MEI Type is used by MEI Transport implementations to dispatch a method invocation to the
indicated interface.
Since the MEI Transport service is interface agnostic, any specific behavior or policy required
by the interface must be provided by the interface, e.g. MEI transaction processing, MEI
interface error handling, etc.

Request
Function code 1 Byte 0x2B
MEI Type* 1 Byte 0x0D or 0x0E

MEI type specific data n Bytes

* MEI = MODBUS Encapsulated Interface

Response
Function code 1 Byte 0x2B

MEI Type 1 byte echo of MEI Type in Request

MEI type specific data n Bytes

Error
Function code 1 Byte 0xAB : Fc 0x2B + 0x80
Exception code 1 Byte 01 or 02 or 03 or 04

As an example see Read device identification request.

MODBUS Application Protocol Specification V1.1b3

 page│51

6.20 43 / 13 (0x2B / 0x0D) CANopen General Reference Request
and Response PDU
The CANopen General reference Command is an encapsulation of the services that will be used
to access (read from or write to) the entries of a CAN-Open Device Object Dictionary as well as
controlling and monitoring the CANopen system, and devices.

The MEI Type 13 (0x0D) is a MODBUS Assigned Number licensed to CiA for the CANopen
General Reference.

The system is intended to work within the limitations of existing MODBUS networks. Therefore,
the information needed to query or modify the object dictionaries in the system is
mapped into the format of a MODBUS message. The PDU will have the 253 Byte limitation in
both the Request and the Response message.

Informative: Please refer to Annex B for a reference to a specification that provides information
on MEI Type 13.

6.21 43 / 14 (0x2B / 0x0E) Read Device Identification
This function code allows reading the identification and additional information relative to the
physical and functional description of a remote device, only.
The Read Device Identification interface is modeled as an address space composed of a set of
addressable data elements. The data elements are called objects and an object Id identifies
them.
The interface consists of 3 categories of objects :

 Basic Device Identification. All objects of this category are mandatory : VendorName,
Product code, and revision number.

 Regular Device Identification. In addition to Basic data objects, the device provides
additional and optional identification and description data objects. All of the objects of
this category are defined in the standard but their implementation is optional .

 Extended Device Identification. In addition to regular data objects, the device provides
additional and optional identification and description private data about the physical
device itself. All of these data are device dependent.

Object Id Object Name / Description Type M/O category
0x00 VendorName ASCII String Mandatory

Basic 0x01 ProductCode ASCII String Mandatory
0x02 MajorMinorRevision ASCII String Mandatory
0x03 VendorUrl ASCII String Optional

Regular
0x04 ProductName ASCII String Optional

0x05 ModelName ASCII String Optional

0x06 UserApplicationName ASCII String Optional
0x07 …
0x7F Reserved Optional

0x80 …
0xFF

Private objects may be optionally defined.
The range [0x80 – 0xFF] is Product
dependant.

device
dependant Optional Extended

MODBUS Application Protocol Specification V1.1b3

 page│52

Request
Function code 1 Byte 0x2B
MEI Type* 1 Byte 0x0E
Read Device ID code 1 Byte 01 / 02 / 03 / 04

Object Id 1 Byte 0x00 to 0xFF

* MEI = MODBUS Encapsulated Interface

Response
Function code 1 Byte 0x2B

MEI Type 1 byte 0x0E

Read Device ID code 1 Byte 01 / 02 / 03 / 04

Conformity level 1 Byte 0x01 or 0x02 or 0x03 or 0x81
or 0x82 or 0x83

More Follows 1 Byte 00 / FF

Next Object Id 1 Byte Object ID number

Number of objects 1 Byte

List Of

Object ID 1 Byte

Object length 1 Byte

Object Value Object length Depending on the object ID

Error
Function code 1 Byte 0xAB : Fc 0x2B + 0x80
Exception code 1 Byte 01 or 02 or 03 or 04

Request parameters description :
A MODBUS Encapsulated Interface assigned number 14 identifies the Read identification
request.
The parameter " Read Device ID code " allows to define four access types :

01: request to get the basic device identification (stream access)
02: request to get the regular device identification (stream access)
03: request to get the extended device identification (stream access)
04: request to get one specific identification object (individual access)

An exception code 03 is sent back in the response if the Read device ID code is illegal.
In case of a response that does not fit into a single response, several transactions
(request/response) must be done. The Object Id byte gives the identification of the first object
to obtain. For the first transaction, the client must set the Object Id to 0 to obtain the beginning
of the device identification data. For the following transactions, the client must set the Object Id
to the value returned by the server in its previous response.
Remark : An object is indivisible, therefore any object must have a size consistent with the size

of transaction response.

If the Object Id does not match any known object, the server responds as if object 0 were pointed
out (restart at the beginning).
In case of an individual access: ReadDevId code 04, the Object Id in the request gives the
identification of the object to obtain, and if the Object Id doesn't match to any known object, the
server returns an exception response with exception code = 02 (Illegal data address).

MODBUS Application Protocol Specification V1.1b3

 page│53

If the server device is asked for a description level (readDevice Code)higher that its conformity
level , It must respond in accordance with its actual conformity level.

Response parameter description :
Function code : Function code 43 (decimal) 0x2B (hex)
MEI Type 14 (0x0E) MEI Type assigned number for Device Identification

Interface
ReadDevId code : Same as request ReadDevId code : 01, 02, 03 or 04
Conformity Level Identification conformity level of the device and type of supported

access
0x01: basic identification (stream access only)
0x02: regular identification (stream access only)
0x03: extended identification (stream access only)
0x81: basic identification (stream access and individual access)
0x82: regular identification (stream access and individual access)
0x83: extended identification(stream access and individual
access)

More Follows In case of ReadDevId codes 01, 02 or 03 (stream access),
If the identification data doesn't fit into a single response, several
request/response transactions may be required.
0x00 : no more Object are available
0xFF : other identification Object are available and further

MODBUS transactions are required
In case of ReadDevId code 04 (individual access),
this field must be set to 00.

Next Object Id If "MoreFollows = FF", identification of the next Object to be asked
for.
If "MoreFollows = 00", must be set to 00 (useless)

Number Of Objects Number of identification Object returned in the response
 (for an individual access, Number Of Objects = 1)

Object0.Id Identification of the first Object returned in the PDU (stream
access) or the requested Object (individual access)

Object0.Length Length of the first Object in byte
Object0.Value Value of the first Object (Object0.Length bytes)
…
ObjectN.Id Identification of the last Object (within the response)
ObjectN.Length Length of the last Object in byte
ObjectN.Value Value of the last Object (ObjectN.Length bytes)

Example of a Read Device Identification request for "Basic device identification" : In this
example all information are sent in one response PDU.

Request Response
Field Name Value Field Name Value
Function 2B Function 2B
MEI Type 0E MEI Type 0E
Read Dev Id code 01 Read Dev Id Code 01
Object Id 00 Conformity Level 01
 More Follows 00

MODBUS Application Protocol Specification V1.1b3

 page│54

 NextObjectId 00
 Number Of Objects 03
 Object Id 00
 Object Length 16
 Object Value " Company identification"
 Object Id 01
 Object Length 0D
 Object Value " Product code XX"
 Object Id 02
 Object Length 05
 Object Value "V2.11"

In case of a device that required several transactions to send the response the following
transactions is intiated.

First transaction :
Request Response
Field Name Value Field Name Value
Function 2B Function 2B
MEI Type 0E MEI Type 0E
Read Dev Id code 01 Read Dev Id Code 01
Object Id 00 Conformity Level 01

 More Follows FF
 NextObjectId 02
 Number Of Objects 03
 Object Id 00
 Object Length 16
 Object Value " Company identification"
 Object Id 01
 Object Length 1C

 Object Value " Product code
XXXXXXXXXXXXXXXX"

Second transaction :
Request Response
Field Name Value Field Name Value
Function 2B Function 2B
MEI Type 0E MEI Type 0E
Read Dev Id code 01 Read Dev Id Code 01
Object Id 02 Conformity Level 01
 More Follows 00
 NextObjectId 00
 Number Of Objects 03
 Object Id 02
 Object Length 05
 Object Value "V2.11"

MODBUS Application Protocol Specification V1.1b3

 page│55

Figure 30: Read Device Identification state diagram

7. MODBUS Exception Responses
When a client device sends a request to a server device it expects a normal response. One of four

possible events can occur from the client’s query:

 If the server device receives the request without a communication error, and can handle the

query normally, it returns a normal response.

 If the server does not receive the request due to a communication error, no response is

returned. The client program will eventually process a timeout condition for the request.

MODBUS Application Protocol Specification V1.1b3

 page│56

 If the server receives the request, but detects a communication error (parity, LRC, CRC, ...),

no response is returned. The client program will eventually process a timeout condition for

the request.

 If the server receives the request without a communication error, but cannot handle it (for

example, if the request is to read a non–existent output or register), the server will return an

exception response informing the client of the nature of the error.

The exception response message has two fields that differentiate it from a normal response:

Function Code Field: In a normal response, the server echoes the function code of the original

request in the function code field of the response. All function codes have a most–significant bit (MSB)

of 0 (their values are all below 80 hexadecimal). In an exception response, the server sets the MSB

of the function code to 1. This makes the function code value in an exception response exactly 80

hexadecimal higher than the value would be for a normal response.

With the function code’s MSB set, the client's application program can recognize the exception

response and can examine the data field for the exception code.

Data Field: In a normal response, the server may return data or statistics in the data field (any

information that was requested in the request). In an exception response, the server returns an

exception code in the data field. This defines the server condition that caused the exception.

Example of a client request and server exception response

Request Response
Field Name (Hex) Field Name (Hex)

Function 01 Function 81

Starting Address Hi 04 Exception Code 02

Starting Address Lo A1

Quantity of Outputs Hi 00

Quantity of Outputs Lo 01

In this example, the client addresses a request to server device. The function code (01) is for a Read
Output Status operation. It requests the status of the output at address 1185 (04A1 hex). Note that
only that one output is to be read, as specified by the number of outputs field (0001).
If the output address is non–existent in the server device, the server will return the exception response
with the exception code shown (02). This specifies an illegal data address for the server.

A listing of exception codes begins on the next page.

MODBUS Application Protocol Specification V1.1b3

 page│57

MODBUS Exception Codes
Code Name Meaning

01 ILLEGAL FUNCTION

The function code received in the query is not an allowable action for the server.
This may be because the function code is only applicable to newer devices, and
was not implemented in the unit selected. It could also indicate that the server is
in the wrong state to process a request of this type, for example because it is
unconfigured and is being asked to return register values.

02 ILLEGAL DATA ADDRESS

The data address received in the query is not an allowable address for the
server. More specifically, the combination of reference number and transfer
length is invalid. For a controller with 100 registers, the PDU addresses the first
register as 0, and the last one as 99. If a request is submitted with a starting
register address of 96 and a quantity of registers of 4, then this request will
successfully operate (address-wise at least) on registers 96, 97, 98, 99. If a
request is submitted with a starting register address of 96 and a quantity of
registers of 5, then this request will fail with Exception Code 0x02 “Illegal Data
Address” since it attempts to operate on registers 96, 97, 98, 99 and 100, and
there is no register with address 100.

03 ILLEGAL DATA VALUE

A value contained in the query data field is not an allowable value for server.
This indicates a fault in the structure of the remainder of a complex request, such
as that the implied length is incorrect. It specifically does NOT mean that a data
item submitted for storage in a register has a value outside the expectation of
the application program, since the MODBUS protocol is unaware of the
significance of any particular value of any particular register.

04 SERVER DEVICE FAILURE
An unrecoverable error occurred while the server was attempting to perform the
requested action.

05 ACKNOWLEDGE

Specialized use in conjunction with programming commands.
The server has accepted the request and is processing it, but a long duration of
time will be required to do so. This response is returned to prevent a timeout
error from occurring in the client. The client can next issue a Poll Program
Complete message to determine if processing is completed.

06 SERVER DEVICE BUSY
Specialized use in conjunction with programming commands.
The server is engaged in processing a long–duration program command. The
client should retransmit the message later when the server is free.

08 MEMORY PARITY ERROR

Specialized use in conjunction with function codes 20 and 21 and reference
type 6, to indicate that the extended file area failed to pass a consistency
check.
The server attempted to read record file, but detected a parity error in the
memory. The client can retry the request, but service may be required on the
server device.

0A
GATEWAY PATH
UNAVAILABLE

Specialized use in conjunction with gateways, indicates that the gateway was
unable to allocate an internal communication path from the input port to the
output port for processing the request. Usually means that the gateway is
misconfigured or overloaded.

0B
GATEWAY TARGET DEVICE
FAILED TO RESPOND

Specialized use in conjunction with gateways, indicates that no response was
obtained from the target device. Usually means that the device is not present on
the network.

MODBUS Application Protocol Specification V1.1b3

 page│58

Annex A (Informative): MODBUS RESERVED FUNCTION CODES, SUBCODES AND MEI
TYPES

The following function codes and subcodes shall not be part of this published Specification and
these function codes and subcodes are specifically reserved. The format is function code/subcode
or just function code where all the subcodes (0-255) are reserved: 8/19; 8/21-65535, 9, 10, 13, 14,
41, 42, 90, 91, 125, 126 and 127.

Function Code 43 and its MEI Type 14 for Device Identification and MEI Type 13 for CANopen
General Reference Request and Response PDU are the currently available Encapsulated Interface
Transports in this Specification.

The following function codes and MEI Types shall not be part of this published Specification and
these function codes and MEI Types are specifically reserved: 43/0-12 and 43/15-255. In this
Specification, a User Defined Function code having the same or similar result as the Encapsulated
Interface Transport is not supported.

MODBUS is a registered trademark of Schneider Automation Inc.

Annex B (Informative): CANOPEN GENERAL REFERENCE COMMAND

Please refer to the MODBUS website or the CiA (CAN in Automation) website for a copy and terms
of use that cover Function Code 43 MEI Type 13.

MODBUS Application Protocol Specification V1.1b3

 page│59

International

Customer

Person in Charge :

Daniel Jang

daniel@dingsmotion.com

No. 2850 Luheng Road, Changzhou

Economic Development Zone,

Jiangsu Province, China

+86-519-85177825, 85177826

North America

Customer

Person in Charge :

Nicolas Ha

sales@dingsmotionusa.com

335 Cochrane Circle Morgan Hill,

CA 95037

+1-408-612-4970

China

Customer

Person in Charge :

Sweet Shi

info@dingsmotion.com

No. 2850 Luheng Road, Changzhou

Economic Development Zone,

Jiangsu Province, China

+86-519-85177825, 85177826

It is prohibited to copyright or replication of the part or whole of user manual without permission.

+86-0519-8517 7825

 +86-0519-8517 7807

 No. 2850 Luheng Road, Changzhou Economic

Development Zone, Jiangsu Province, China

www.dingsmotion.com

mailto:daniel@dingsmotion.com
mailto:sales@dingsmotionusa.com

